Sub-classical Boolean Bunched Logics and the Meaning of Par
نویسندگان
چکیده
We investigate intermediate logics between the bunched logics Boolean BI and Classical BI, obtained by combining classical propositional logic with various flavours of Hyland and De Paiva’s full intuitionistic linear logic. Thus, in addition to the usual multiplicative conjunction (with its adjoint implication and unit), our logics also feature a multiplicative disjunction (with its adjoint co-implication and unit). The multiplicatives behave “sub-classically”, in that disjunction and conjunction are related by a weak distribution principle, rather than by De Morgan equivalence. We formulate a Kripke semantics, covering all our sub-classical bunched logics, in which the multiplicatives are naturally read in terms of resource operations. Our main theoretical result is that validity according to this semantics coincides with provability in a corresponding Hilbertstyle proof system. Our logical investigation sheds considerable new light on how one can understand the multiplicative disjunction, better known as linear logic’s “par”, in terms of resource operations. In particular, and in contrast to the earlier Classical BI, the models of our logics include the heaplike memory models of separation logic, in which disjunction can be interpreted as a property of intersection operations over heaps. 1998 ACM Subject Classification F.3.1 Logics and Meanings of Programs, F.4.1 Mathematical Logic and Formal Languages
منابع مشابه
Stone-Type Dualities for Separation Logics
Stone-type duality theorems, which relate algebraic and relational/topological models, are important tools in logic because — in addition to elegant abstraction — they strengthen soundness and completeness to a categorical equivalence, yielding a framework through which both algebraic and topological methods can be brought to bear on a logic. We give a systematic treatment of Stone-type duality...
متن کاملBunched Hypersequent Calculi for Distributive Substructural Logics
We introduce a new proof-theoretic framework which enhances the expressive power of bunched sequents by extending them with a hypersequent structure. A general cut-elimination theorem that applies to bunched hypersequent calculi satisfying general rule conditions is then proved. We adapt the methods of transforming axioms into rules to provide cutfree bunched hypersequent calculi for a large cl...
متن کاملA Stone-Type Duality Theorem for Separation Logic via its Underlying Bunched Logics
Stone-type duality theorems, which relate algebraic and relational/topological models, are important tools in logic because — in addition to elegant abstraction — they strengthen soundness and completeness to a categorical equivalence, yielding a framework through which both algebraic and topological methods can be brought to bear on a logic. We give a systematic treatment of Stone-type duality...
متن کاملAn Alternative Direct Simulation of Minsky Machines into Classical Bunched Logics via Group Semantics (full version)
Recently, Brotherston & Kanovich, and independently Larchey-Wendling & Galmiche, proved the undecidability of the bunched implication logic BBI. Moreover, Brotherston & Kanovich also proved the undecidability of the related logic CBI, as well as its neighbours. All of the above results are based on encodings of two-counter Minsky machines, but are derived using different techniques. Here, we sh...
متن کاملA syntactic proof of decidability for the logic of bunched implication BI
The logic of bunched implication BI provides a framework for reasoning about resource composition and forms the basis for an assertion language of separation logic which is used to reason about software programs. Propositional BI is obtained by freely combining propositional intuitionistic logic and multiplicative intuitionistic linear logic. It possesses an elegant proof theory: its bunched ca...
متن کامل